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Abstract—Large-scale electricity storage can enable arbitrage 

between periods when electricity is abundant, and cheap, and 

periods when it is scarce.  In principle, this could enable greater 

use of baseload generation, and encourage investments in 

intermittent capacity such as wind and solar.  If storage is to 

penetrate the system, the marginal value of storage capacity must 

be high enough to enable investments in storage. To have a 

significant impact on investments in intermittent technologies, it 

must be large enough to affect the prices on the system. This 

research develops a theoretical framework to evaluate the 

marginal values of the components of a storage system, and to 

characterize the impact of storage on the price patterns in the 

system.  The theoretical approach is applied to an example 

system to illustrate the changes in marginal values as storage 

penetrates the system, and the impact on system prices. 

 
Index Terms-- 

Power systems, Energy storage, Power generation planning 

I.  NOMENCLATURE 

Subscripts and superscripts: 

a  = designates generators 

c = designates the charging device for storage 

d = designates the discharging device for storage 

r = designates the storage reservoir  

h = designates an hour of the year 

j = designates a charge/discharge cycle 

Objective function: 

C
tot

 =  total annual capital plus operating cost of the system, 

$/yr 

Decision variables: 

ka =  the capacity of generator a, which is the peak output 

available from generator a, kW. 

kc = capacity of the storage charge device, kW 

kd = capacity of the storage discharge device, kW 

kr = capacity of the storage reservoir, kWh 

ga,h =  output, or dispatch, of generator a in the hour h, kW 

gd,h =  output, or dispatch, of storage discharge device in the 

hour h, kW 

gc,h =  output, or dispatch, of the storage charge in the hour 

h.  This is the rate of energy input to the storage 

reservoir, kW 

fj = the hour that the storage reservoir is fully charged on 
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cycle j 

ej = the hour that cycle j begins, with storage level at 0 

Model parameters: 

   

Ca
cap =  annual capital cost of one unit of capacity for 

generator a or for the charge and discharge devices, 

$/kW-yr  

   

Cc
cap =  annual capital cost of one unit of capacity for the 

storage charge device, $/kW-yr 

   

C
d
cap =  annual capital cost of one unit of capacity for the 

storage discharge device, $/kW-yr 

   

Cr
cap = annual capital cost for one unit of reservoir capacity, 

$/kW-yr 

   

Ca
var  =  variable operating cost of generator a, including the 

charge and discharge devices,  $/kWh 

   

Cc
var  =  variable operating cost of the storage charge device,  

$/kWh 

   

C
d
var  =  variable operating cost of the storage discharge 

device,  $/kWh 

Dh =  demand in hour h, kW 

ηd = efficiency of the discharge device 

ηc = efficiency of the charge device  

   

F
a,h
prd =  the fraction of peak output (production factor) that 

generator a can provide in period h.  The production 

factor of intermittent generators varies from hour to 

hour.  If 

   

F
a,h
prd= 1.0, the available output of the 

generator equals its peak capacity.  If

   

F
a,h
prd= 0.5, the 

available output is 0.5 of its peak capacity.  For a 

dispatchable generator 

   

F
a,h
prd=1 in all hours. 

Variables: 

   

 = Lagrange multipliers, defined in the text.

Sets and references to elements of sets: 

   

Ha
* =  the set of hours when generator a is dispatched to its 

full available capacity. 

   

H c
* =  the set of hours when the charging device is 

dispatched to its full capacity 

   

Hd
* =  the set of hours when the discharging device is 

dispatched to its full capacity 

H =  all hours in a year. 

J  =  indices of all charging/discharging cycles. 

j(h) = the fill/empty cycle that contains hour h 

 

Assessing the economic value and optimal 
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II.  INTRODUCTION 

It is frequently suggested that large-scale energy storage 

will be an important part of a future, low carbon energy 

system. Proposed future energy systems based on large 

renewables either explicitly or implicitly assume that there 

will be storage available to make efficient use of the 

intermittent power generation through arbitrage between 

periods of high energy availability and periods when energy is 

scarce  (Hoffman, et al [1], Jacobson and Delucchi [2], Turner 

[3]).   

Renewable generation and storage can form a 

complementary system if they are economically 

complementary.  That is, if the penetration of one technology 

tends to encourage investment in the other.  As an example, 

wind often generates overnight when demand is low.  Large 

wind capacity tends to drive down the prices discouraging 

further investment in wind.  If large-scale storage is added to 

the system, it can charge during periods of low prices, raising 

the load on the system and increasing prices.  The increased 

prices will encourage further investment in wind. However, 

the increased prices while charging will increase the cost of 

storage operation and limit the economic penetration of 

storage. To evaluate the economic role of storage we must 

address two questions:  

 How is the penetration of storage determined by 

conditions on the system, and what is the most efficient 

configuration of capacities for generation, charging, 

discharging, and energy storage?  

 How does large-scale storage affect the pattern of prices 

on the system and, thereby, affect the economic 

penetration of other technologies? 

This paper develops an analytic optimization model to 

address these issues. The solution to the model’s equations 

provide analytic expressions for the economic value of storage 

capacity investments, and provides insight into the patterns of 

price impacts that storage will have on the system. 

The rest of the introduction describes the analytical 

approach for addressing these questions, and compares this 

approach to other work in the field.  The details of the analytic 

model and its solution are discussed in Section III.  Section IV 

provides a practical illustration of the application of the model 

to show the nature of the results that would be obtained.  

Section V discusses the price effects of storage and examines 

the impact that storage may have on renewable investments. 

A.  Overview of the analytic approach: 

The approach first formulates an analytic model for the 

optimal configuration and operation of an electric generation 

system that includes storage. This is formulated as a 

Lagrangian optimization model
1
 to minimize the total capital 

and operating costs of the system.  The equations are solved to 

derive analytic expressions for the conditions that determine 

the system price in each hour, the system dispatch, and the 

                                                           
1 See Schweppe et al [4] for a similar Lagrangian formulation (without 

storage).  The time horizon in the Schweppe formulation is the life of the 
investments whereas for this formulation the time horizon is a single year. 

conditions for optimal investment in storage and generation 

capacity.  

A key concept in capacity optimization is the “marginal 

value” of capacity.  Heuristically, one can think of capacity as 

being added to a system in increments.  Each incremental 

investment adds some amount of value to the system (for 

example, storage can decrease the cost of the system by using 

more low cost energy and displacing higher cost generation).  

The value of a small increment of capacity is the marginal 

value of capacity (strictly speaking, the term “marginal value” 

refers to infinitesimal increments of capacity). Typically the 

initial increments of capacity have a high marginal value, but 

the marginal value decreases as more capacity is added.  As 

long as the marginal value is greater than the marginal cost it 

is optimal to add an increment of capacity.  Once enough 

capacity has been added such that the marginal value is just 

equal to the marginal cost, the level of capacity is optimal.  An 

essential result from optimization theory is that marginal value 

should equal marginal cost for all of the different types of 

capacity in the system (Schweppe [4], Stoft [5]).  

The solutions to the Lagrangian model’s equations provide 

analytic expressions for the marginal value of each of the 

components of the system (charge and discharge capacity, 

energy storage capacity, and generation capacity).  These 

expressions demonstrate the changes in marginal value as 

storage penetrates the system.  The process of finding an 

overall optimum is complicated by the fact that the changing 

level of capacity for one technology can change the marginal 

values of other technologies.  The equations provide insight 

into these cross impacts.  Finally, the expressions can be 

interpreted to provide insight into the pattern of prices that 

would result from energy storage. 

The marginal value of capacity for any of the technologies 

depends on the way that it is actually used in the system.  In 

particular, marginal value depends on the number of times the 

full capacity is used during the year and the value that 

additional capacity would contribute each time the full 

capacity is used.  If the installed capacity is never fully used, 

then, obviously, adding more capacity does not contribute any 

value.  Conversely, if the full capacity is used frequently, then 

it is likely that adding capacity could be valuable. In the case 

of storage, additional capacity would only be useful in those 

instances when the storage capacity is completely charged and 

the completely discharged.  In those instances additional 

capacity would allow an operator to charge with more energy 

at a low price and discharge it at a higher price.  

The marginal value of energy storage also depends on the 

price differential between charging and discharging each time 

the storage cycles. The value of storage tends to decrease as 

capacity is added because storage tends to raise system prices 

(system costs) when it charges, and lower system prices when 

it discharges.  As more capacity is added, these price effects 

become stronger, narrowing the differential. Consequently the 

analysis of storage value needs to account for the price 

impacts of storage as capacity is increased. 

In general, the charge/discharge power capacity of a 

storage system can be sized separately from the energy storage 
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capacity. Since the charging and discharging capacity is a 

substantial part of the cost of a storage system ([6], [7]), the 

costs and values of the charging/discharging capacity have a 

substantial effect on the design of the system.  The analysis 

finds separate expressions for the marginal values of these 

components. 

The practical illustration portion of this paper applies this 

analysis to an example based on the California electricity grid. 

The example uses the equations from the theoretical analysis 

to compute the marginal values of charge/discharge capacity 

and storage capacity as their capacities are increased.  These 

results can be used to determine the optimal capacities of 

storage capacity.  Given the marginal costs of capacity we can 

find the level of capacity such that marginal cost equals 

marginal value, which will be the optimal set of capacities. 

 

B.  Relation to previous work 

 A number of studies have assessed the economic viability 

of electricity storage in different markets (EPRI [8], Eyer et al 

[9], Fertig and Apt [10], Hessami and Bowly [11]), Iannucci et 

al [12], Korpaas, et al [13], Lamont [14], NYSERDA [15]). 

These studies considered small-scale storage—systems that 

are small enough that they do not affect operation or prices of 

the electric system as a whole. The studies evaluated the net 

revenues that would accrue to the owner of a storage facility 

of a given capacity and compared them to the cost of installing 

and operating the storage facility. Analysis of small-scale 

systems gives a good understanding of the possibilities for 

initial penetration of storage.  These essentially tell us the cost 

point at which an investor might be willing to invest in the 

first storage facility in a given market. But, they do not tell us 

how much capacity would be optimal. 

As noted above, an understanding of the marginal value of 

capacity is essential for finding the optimal design of a storage 

system.  Both [14] and [16] make empirical estimates of the 

marginal value of energy storage capacity by computing the 

total value of the storage system for a sequence of storage 

capacities.  Computing the incremental change in total value 

per incremental change in storage capacity provides an 

estimate of the marginal value of storage capacity as a 

function of the total capacity.  However, this empirical 

approach does not provide a basic understanding of the factors 

that determine the marginal value of storage capacity.  

The discussion above addressed the fact that storage tends 

to raise prices when it charges and decrease prices when it 

discharges.  This is an important effect both for the economics 

of the storage itself, and for the effect that storage will have on 

the economics of other technologies.  The price impact of 

storage has been included in some studies (e.g. NYSERDA 

[15]).  Sioshansi et al [16] estimates the price impact of large-

scale storage in order to evaluate the welfare implications of 

changing prices in the PJM system.  However, these do not 

assess the impact of the changing prices on the economic 

viability of storage. 

 Tuohy and O’Mally [17] examine the possible changes to 

the entire system that storage would allow.  By adjusting the 

generating capacity on the balance of the system, they 

illustrate scenarios in which the addition of storage reduces 

capital and operating costs of the balance of the system.  

These savings can be compared to the costs of the storage 

system to determine if storage is economically advantageous. 

 We note that storage might play a number of 

economically useful roles in a system aside from arbitrage.  

Among them are: regulation, congestion relief, and 

transmission deferral (Eyer et al, [9]).  In these applications 

the prices will be determined by locational marginal prices, 

which are functions of generation costs, transmission losses, 

and transmission constraints. The same general form of 

analysis could be applied to these applications, however, the 

determination of prices would be more complex. 

III.  ANALYTIC MODEL OF LARGE-SCALE STORAGE 

This analysis starts from a capacity optimization model of 

the system. Figure 1 illustrates the conceptual structure of the 

model. There is a set of generators plus a storage system.  

These are dispatched each hour to meet the demand. The 

storage is charged from the generators.  The storage system 

consists of:  1) the storage reservoir (this might be a literal 

reservoir in the case of pumped hydro storage, a mass of 

chemical compound, a tank of hydrogen, or a spinning 

flywheel), 2) the charging device and 3) the discharging 

device. In the case of electro-chemical charging and 

discharging devices consist of wiring and possibly structures 

for heat dissipation.  In the case of pumped hydro, charging 

and discharging is done through a pump-generator. For 

compressed air energy storage, it is a compressor (usually part 

of a combustion turbine).  

 

Figure 1:  Schematic of energy storage in the 

generation system 

Constraints in the optimization model require that: a) the 

demand be met each hour, b) the dispatch of the generators, 

the charging device, and the discharging device is always less 

than or equal to their capacities, and c) that the storage 

reservoir neither overcharges nor discharges below empty.  

The mathematical analysis here treats the charging and 

discharging devices as separate devices.  However, it is easy 

to deal with the case where they are the same device.  

As is discussed above, the marginal value of a technology 

depends on the number of times that its capacity is fully used.  

In terms of the mathematical model, this is the number of 



 4 

times that the constraint on the dispatch of the technology is 

binding. When analyzing the marginal value of storage, we 

account for the cycles in the year that the storage is completely 

charged and then completely discharged, that is, the number of 

times that its capacity is fully used.  Figure 2 illustrates the 

charging and discharging of storage and shows the variables 

used to characterize the cycling of the storage. We identify the 

cycles by the subscript j. The discussions below refer to the 

“charging intervals” and the “discharging intervals”.  As 

illustrated in the figure, these are the intervals when the 

storage goes from empty to fully charged, and then from fully 

charged to empty, respectively. The storage starts off empty at 

hour ej.  It then charges until completely full by hour fj.  To 

complete the cycle, it completely discharges by hour ej+1. 

During a charging or discharging interval, the energy stored 

might increase and decrease several times, but the cycle is 

only complete once the storage has completely charged and 

then completely discharged.  The storage operator will earn 

additional revenue by partially cycling the storage (otherwise 

there would be no point in the partial cycles).  However, these 

partial cycles do not contribute to the marginal value of the 

storage since the operator would earn the same revenue 

whether the capacity of the storage was increased or not.  

The hours at which the storage completely charges or 

completely discharges are decision variables in the problem. 

There are corresponding constraints that the storage must 

completely charge and completely discharge by the hours 

specified. 

 

 

Figure 2: Illustration of the nomenclature for 

charging and discharging cycles 

A.   Analytic model 

 The model finds the capacities of the generators, 

capacities of storage system, the dispatch of the generators, 

and the times to charge and discharge the storage so as to 

minimize the total annual capital and operating cost of the 

system.  The minimization is subject to the constraints that the 

total output each hour must equal the demand that hour, the 

dispatch of each generator must be less than or equal to its 

available capacity, and the storage must complete each cycle 

by fully charging and discharging. 

The generators are denoted in the equations by the 

subscript a.  The generators (and the storage discharge) are 

dispatched to meet the final demand in each hour, Dh.  Some 

of the generation technologies are intermittent so that in some 

hours their available capacity is only a fraction, 

   

Fa,h

prd

 , of their 

nameplate (or peak) capacity.  For a dispatchable generator, 

   

Fa,h

prd

 is 1.0 for each hour (see Lamont [18] for details of the 

formulation to accommodate intermittent generation in an 

optimization model).  This analysis ignores forced outages. 

 

The analytic model is formulated as follows: 

Objective: Minimize the total annual capital costs and 

annual operating cost 

   

C
tot

= Ca
cap

· ka
æ 
è 
ç ö 

ø 
÷ +Cc

cap
· kc +C

d
cap

· kd +Cr
cap

· rk

a

å

           +   Ca
var

· ga,h( )
a

å
h

å + Cc
var

· gc,h( )
h

å + C
d
var

· gd ,h( )
h

å
 (1) 

Subject to the following constraints: 

•  Do not exceed capacity of any generator  

  

ga,h = F
a,h
prd

· ka     "a, h Î Ha
*

           (2) 

This constraint would usually be entered into an optimization 

model as ga,h £ Fa,h
prd ·ka .  However, the marginal value of 

capacity is zero when the constraint is not binding, and those 

hours drop out of the analysis.  For the purpose of exposition, 

it is simpler to omit those hours from the constraint equations 

and only include the hours when the constraint is binding and 

generation is equal to available capacity.  We denote the set of 

hours that the constraint is binding for generator a as 

   

Ha
*

.   

•  Do not exceed capacity of the charging device  

  

gc,h = kc     "h Î Hc
*

               (3) 

 

•  Do not exceed capacity of the discharging device 

  

gd,h = kd     "h Î Hd
*
               (4) 

 

•  Meet the demand in all hours, including the charging 

demand 

   

ga,h

a

å + gd ,h = Dh +
gc,h

hc

              " h Î H          (5) 

 

•  Storage reservoir must charge to capacity each cycle: 

   

gc,h -
gd ,h

hd

æ 

è 
ç 

ö 

ø 
÷ = kr              " j Î J   

h=ej

fj

å         (6) 

 

•  Storage reservoir must discharge to zero each cycle 

   

gd ,h

hd
- gc,h

æ 

è 
ç 

ö 

ø 
÷ = kr                    " j Î J   

h=f
j

e
j+1

å       (7) 

 

The complete Lagrangian is:  
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L = Ca
cap

· ka +Cc
cap

· kc +C
d
cap

· kd +Cr
cap

· rk

a

å

    +    Ca
var

· ga,h( )
a

å
h

å + Cc
var

· gc,h( )
h

å + C
d
var

· gd ,h( )
h

å

   + lh

h

å Dh +
gc,h

hc

- gd ,h - ga,h

a

å
æ 

è 

ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
        meet demand

   + g a,h

hÎ a
*

H

å
a

å ga,h - F
a,h
prd

· ka
æ 
è 
ç ö 

ø 
÷          do not exceed generator capacities

    + g c,h gc,h - kc( )
hÎ c

*
H

å                             do not  exceed charging capacity

     + g d ,h gd ,h - kd( )
hÎ d

*
H

å                           do not  exceed discharging capacity

      + a j

j

å kr - gc,h -
gd ,h

hd

æ 

è 
ç 

ö 

ø 
÷  

h=ej

fj

å
æ 

è 

ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
     storage charges to capacity

       + b j

j

å
gd ,h

hd
- gc,h

æ 

è 
ç 

ö 

ø 
÷ 

h=fj

e j+1

å - kr

æ 

è 

ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
      storage discharges to zero

(8) 

B.  The derivatives of the Lagrangian and their interpretations 

 To solve the Lagrangian, we take the derivatives with 

respect to each of the variables and set them to zero. The 

resulting equations have interpretations for the optimal 

operation of the system and for the computation of the 

marginal values of the components of the system.   

In these interpretations, the Lagrange multipliers play a 

prominent role.  To clarify the following discussion, the 

interpretation of the multipliers is discussed below: 

• λh is the Lagrange multiplier for the constraint that the 

sum of the output from the generators plus the discharge of the 

storage must equal the demand in hour h.  λh is the system 

marginal cost (SMC) in hour h. It equals the marginal 

generating cost of the most expensive generator that has been 

dispatched.  It is the reduction in cost that would result from 

reducing the demand by one unit. In a competitive market the 

system marginal cost is the system price (see Stoft [5], CAISO 

[19], or Kirschenand and Strbac[20]). 

• γa,h, γc,h, γd,h,  are the multipliers for the constraints that 

the dispatch of the generators, the charge device, or the 

discharge device cannot exceed the capacities.  These are the 

reductions in cost that would result from increasing the 

capacity of those units in hour h. 

• αj is the multiplier for the constraint that the storage must 

completely charge in cycle j. It is the marginal system cost of 

adding one more unit of energy to storage in cycle j.  If 

another increment of capacity were added to the storage 

reservoir, it would cost αj to fill that unit in cycle j. 

• βj is the multiplier for the constraint that the storage 

cannot discharge below zero during cycle j.  It is the marginal 

value of releasing an additional unit of energy from the 

storage reservoir.  If another unit of capacity were added to the 

storage reservoir, the system cost would be reduced by βj, and 

the storage operator would earn βj, when the energy from that 

unit was released in cycle j. Note that this refers to a unit of 

energy taken from the reservoir and passed to the discharge 

device. Because of discharge efficiency losses, less than one 

unit of energy will actually be discharged into the system. 

 The next sections present the derivatives of the 

Lagrangian with respect to each of the variables in the analysis 

and interpret them in terms of the operation of the system and 

the marginal values of capacity of the components. 

    1)  Optimal operation of the generators:  Derivatives with 

respect to the generation, ga,h: 

This provides the conditions for optimal operation of the 

generators.  Note that the storage charging and discharging 

devices are not included here since their conditions are 

somewhat different.  Differentiating the Lagrangian with 

respect to ga,h for each hour and setting the results to zero 

yields:  

 
(9a) 

(9b) 

 The condition in Equation (9a) applies for those hours 

when generator a is not dispatched to its full available output. 

The generator should be dispatched such that its marginal 

operating cost is equal to λh, the marginal system cost (SMC) 

in that hour (as noted above, SMC is the system price in an 

efficient market). The variable costs in this formulation are 

constant so a generator is dispatched if its variable cost is less 

than or equal to λh , and is not dispatched otherwise.  

 Equation (9b) shows the derivatives for those hours that 

the generator is dispatched to its full capacity.  The system 

marginal cost will be greater than, or equal to, the generator’s 

marginal operating cost. The difference between the 

generator’s marginal operating costs and the system marginal 

cost is γa,h.  This is the value that an additional unit of capacity 

would provide in that hour, provided it generates at full 

capacity.  As long as generator a is not the marginal generator, 

an additional unit of capacity would allow us to back down the 

marginal generator, saving a cost of λh (the generation cost of 

the marginal generator), and costing 

   

Ca
var .  The net savings is 

  

ga,h = lh -Ca
var . 

    2)  Optimal dispatch of charging: Derivative with respect to 

the rate of charge, gc,h  

 This derivative provides the conditions for the optimal 

dispatch of the charging device in each hour. These conditions 

indicate the level of dispatch of the charging device and the 

contribution to the marginal value of the charging capacity in 

hour h. At hour h, the system could be in one of four different 

system conditions depending on whether or not the charging 

device is dispatched to capacity in hour h (so that the 

constraint is binding) and whether or not the system is in the 

charging or discharging interval of a cycle during the hour h.  
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Depending on the condition, different terms of Equation (8) 

apply, giving a different derivative for each of the four 

conditions. Differentiating the Lagrangian with respect to gc,h 

and setting to zero provides the following set of conditions to 

met in hour h: 

charging    

interval of  

cycle j(h)

 

lh= hc a
j h( )

-Cc
var( )                  h Ï c

*
H   

gc,h = a
j h( )

- Cc
var +

lh
hc

æ

è
ç

ö

ø
÷            h Î c

*
H   

ì

í
ïï

î
ï
ï

discharging 

interval of 

cycle j(h)    

lh = hc b
j h( )

-Cc
var( )                   h Ï c

*
H  

gc,h = b
j h( )

- Cc
var +

lh
hc

æ

è
ç

ö

ø
÷            h Î c

*
H  

ì

í
ïï

î
ï
ï

         

(10a) 

(10b) 

(10c) 

(10d) 

 In these equations  is the marginal cost of adding a unit of 

energy to the storage (after accounting for efficiency and any 

operating costs).  That is, it is the cost of the most expensive 

energy that is added during cycle j.  If  is the marginal cost, 

then the operator will begin to charge storage any time the 

SMC is equal to or less than 

   

h c a j h( ) -Cc
varæ 

è 
ç 

ö 

ø 
÷ , since at that 

SMC, the cost of adding a unit of energy to the storage is  

Figure 3 illustrates the behavior of storage charging and 

SMCs, (or prices), during a charging interval.  At the start of 

the interval the end-use demands on the system are relatively 

high so the SMC is greater than 

   

h c a j h( ) -Cc
varæ 

è 
ç 

ö 

ø 
÷  and the 

storage does not charge.  As we move to later hours, the end-

use demands decrease allowing the SMC to decrease.  If there 

were no storage, the SMC would follow the fine line at the 

bottom of the graph. 

At hour a the SMC declines to 

   

lh = h c a j h( ) -Cc
varæ 

è 
ç 

ö 

ø 
÷   and 

the storage begins to charge. Initially the charging device is 

not fully dispatched so equation 10a applies.  As the storage 

charges, it adds load on the system, raising the SMC. Between 

hours a and b, it places enough additional load on the system 

to maintain the SMC at 

   

h c a j h( ) -Cc
varæ 

è 
ç 

ö 

ø 
÷  as required by 

equation (10a).  

 

Figure 3: Illustration of changes in system marginal 

cost during a charging interval 

The hours between a and b and between c and d are the 

marginal hours of charging during this cycle—any additional 

units of energy stored will be added in these hours since the 

charging device is dispatched to capacity in other hours.  As is 

discussed below, the marginal costs of charging and 

discharging have a central role in determining the marginal 

values of charging capacity and reservoir capacity. 

At hour b the end-use demands on the system drop to the 

point that the charging device is fully dispatched and can no 

longer maintain the SMC at 

   

h c a j h( ) -Cc
varæ 

è 
ç 

ö 

ø 
÷ .  At this point the 

SMC begins to decline further, following the heavy line.  

From hour b until hour c the charging device is fully 

dispatched and Equation (10b) applies.  During this interval, 

additional charging capacity would be valuable to the system 

since it would allow the storage to take in more energy at a 

lower price.   Equation (10b) computes the contribution to the 

marginal value of charging capacity in each hour.  Just as in 

the case of other conversion technologies, γc,h is the Lagrange 

multiplier on the constraint that the capacity of the charging 

device cannot be exceeded.  Here γc,h  is the difference 

between , 

   

a j h( )  the marginal cost of adding to storage in that 

cycle, and  

  

Cc
var

+ lh h c , the cost of adding a unit of energy 

in that hour.  With another increment of charging capacity, the 

storage could add a unit of energy at this hour (when the price 

is low) and avoid adding a unit of energy at the marginal cost. 

This difference is the value that additional charging capacity 

would provide in that hour. The marginal value of a unit of 

charging capacity is the sum of the γs over the year.  For a 

single charging cycle, as illustrated in Figure 3, the 

contribution to the marginal value of charging capacity is the 

area of the grey semicircle bounded by 

   

a j h( ) -Cc
var

  at the top 

and the heavy dashed line labeled 

  

lh h c . 

 The discussion up to now refers to charging during the 

charging interval. It is also possible for the storage to charge 

during the discharge interval.  Equations (10c) and (10d) 

address the case.  Typically the system price is high during the 

discharge interval (hence the storage discharges).  However, If 

the SMC drops below
 lh =hc b

j h( )
-Cc

var( )  it will be 

worthwhile to charge. The cost of adding a unit of energy to 

the reservoir is lh /hc +Cc
var

 which is just equal to the value of 

releasing a unit of energy from the reservoir, b
j h( )  for cycle j 

(as noted above, due to efficiency losses, less than one unit 

will actually discharged to the system).  By charging, storage 

will cause the system price to rise.  If the storage has enough 

charging capacity, it should charge at a rate that raises the 

system price to lh =hc b
j h( )

-Cc
var( )  as indicated by Equation 

(10c).  Equation (10d) addresses the case where the charging 

capacity is not large enough to raise the system price to 
hc b

j h( )
-Cc

var( ) .  In that case, adding an additional unit of 

charging capacity would allow the operator to charge at a cost 

that is less than the earnings that he will receive from releasing 

the unit of energy.  The difference is γc,h, which is the 

marginal value of additional charging capacity in that hour. 
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    3)  Optimal dispatch of discharging: Derivatives with 

respect to the rate of discharge each hour, gd,h  

 This derivative gives us the conditions for the optimal 

dispatch of the discharging device for each hour.  

Differentiating with respect to gd,h and setting the derivatives  

to zero gives the following equations governing the discharge 

of storage and the contributions to the marginal value of the 

discharge capacity. Similar to the charging device there are 

four different system conditions that give us four different 

equations: 

      

discharging

interval of 

cycle j(h)

  

lh =Cd
var +

b
j h( )

hd
                           h Ï d

*
H

gd,h = lh - Cd
var +

b
j h( )

hd

æ

è
çç

ö

ø
÷÷               h Î d

*
H

ì

í

ï
ï

î

ï
ï

charging      

interval of 

cycle j(h)    

 

lh =Cd
var +

a
j h( )

hd
                           h Ï d

*
H

gd,h = lh - Cd
var +

a
j h( )

hd

æ

è
çç

ö

ø
÷÷                h Î d

*
H  

ì

í

ï
ï

î

ï
ï

     

(11a) 

(11b) 

(11c) 

(11d) 

 The behavior of the system marginal cost during 

discharge is illustrated in Figure 4.  This is analogous to the 

behavior during charging.  During the discharge part of the 

cycle the storage begins to discharge once the SMC increases 

to  

   

C
d
var

+ b j h( ) hd .  At this SMC, βj is the marginal earnings per 

unit released from the storage reservoir (less than one unit will 

be discharged to the system due to the efficiency losses of the 

discharging device). 

 Analogous to the charging cycle, between hours a and b 

and between c and d the storage discharges at a rate to 

maintain the SMC at 

   

C
d
var

+ b j h( ) hd .  Between hours b and c 

the load on the system rises to the point that the discharge 

device is dispatched to capacity and can no longer maintain 

that SMC.  After time b the SMC rises following the heavy 

line. 

 In each hour between b and c, γd,h, is the marginal value 

of discharging capacity.  It is the difference between the SMC, 

λh, and 

   

C
d
var

+ b j h( ) hd  in equation (11b).  The logic is as 

follows: An additional unit of discharge capacity would allow 

the operator to discharge another unit at hour h and earn 
lh -Cd

var

.   Discharging that unit of energy would remove 1/ d 

units of energy from the reservoir, after accounting for the 

efficiency losses of discharging. The operator would forego 

releasing that energy at the marginal hour, so he would forego 

earnings of b
j h( )

hd .  The net revenues in hour h from another 

unit of discharging capacity would be gd,h = lh -Cd
var - b

j h( )
hd . 

In Figure 4, the area of the grey semicircle bounded by the 

SMC (with charging, the heavy line) on the top and the line 

   

C
d
var

+ b j h( ) hd on the bottom is the total contribution to the 

marginal value of discharge capacity for this cycle. 

 

 

Figure 4 :  Illustration of system marginal cost 

during discharge interval 

    4)  Capital cost recovery of charge and discharge devices, 

and the generators: Derivatives with respect to the capacities, 

kc, kd ,and  ka  

 The derivatives with respect to the capacities give the 

conditions for the capital cost recovery of the charge and 

discharge devices, and the generators. Setting these derivatives 

to 0 yields the following equations: 

c
cap
C = gc,h

hÎ c
*H

å                (12) 

 

d
cap
C = gd,h

hÎ d
*H

å                (13) 

 

 
a
cap
C = ga,h ·Fa,h

prd( )
hÎ a

*H

å  
             (14) 

To optimize system, capacity is added to each type of 

technology up to the point that the marginal value of capacity 

is equal to the marginal cost of capacity.  The total marginal 

value of capacity is the sum of the hourly marginal capacity 

values, γs, over the year.   

To account for intermittent generators the available 

capacity in each hour is multiplied by Fa,h
prd

(the production 

factor for the generator in hour h) so the actual value provided 

by an increment of capacity is ga,h ·Fa,h
prd

 in hour h.  Recall that 

the production factor for a dispatchable generator is 1. 

    5)  Optimal energy storage capacity: Derivative with 

respect to the capacity of the storage reservoir, kr 

 This derivative gives us the optimal conditions for the 

capital cost recovery of the storage reservoir   

Setting the derivative to 0 yields: 

  

   

b j -a j( )
j=1

J

å =Cr
cap               (15) 

From equation (15) we see that the marginal value of the 

reservoir is a function of the number of times that the reservoir 

fully cycles over the year (J) and the differentials between the 

marginal costs of charging (α) and the marginal value of 

discharging (β) when it cycles.  Note that the number of cycles 

in the year is determined by the optimization. 
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    6)  Case when the same device charges and discharges 

 In this mathematical formulation charging and 

discharging are represented as separate devices.  In many real 

storage technologies charging and discharging use the same 

physical device.  When that is the case, the marginal value of 

capacity is simply the sum of the hourly marginal capacity 

values (γs) attributed to the device in either mode.  

C.  Interactions between capacities and marginal values of 

storage system components 

 The previous equations show the mechanisms that lead to 

the changes in marginal values of the components as the 

capacities of the components are changed.  There is a self-

effect, the marginal value of a component decreases as its own 

capacity increases, and there is a cross-effect, the marginal 

value of one component increases when the capacity of 

another component is increased.   

As an example, consider the effects of increasing the 

storage reservoir capacity.  When the capacity of the storage 

reservoir is increased, it must charge over more hours in order 

to completely fill (given that charging capacity does not 

change).  This implies that α, which governs the system price 

at which it begins to charge, must be increased for each cycle.  

From Equation (15) it is seen that this will decrease the 

marginal value of the reservoir capacity.  In addition, 

increasing the capacity of the reservoir may reduce the number 

of times that it can completely cycle, further reducing the 

marginal value. 

 However, when α is increased due to an increase in the 

reservoir capacity, the marginal value of charging capacity is 

increased in each hour that the reservoir charges and the 

reservoir will charge for more hours. This can be most easily 

seen in Figure 3.  The height and width of the shaded area 

increase, which corresponds to an increase in the marginal 

value of the charging capacity.   

IV.  PRACTICAL ILLUSTRATION OF THE APPLICATION 

AND THE MARGINAL VALUES OF THE STORAGE 

SYSTEM COMPONENTS 

 The following example uses the equations derived above 

to illustrate the marginal value and penetration of large-scale 

storage in an example based on data for California.  It is not 

intended to be a model of the California system, but this gives 

a view of the results that could be obtained from the 

theoretical analysis derived above.  The example computes the 

marginal values of charging/discharging capacity and 

reservoir capacity for different combinations of capacities.  

Given the costs and efficiencies of these capacities for a given 

storage technology, we can determine the optimal capacities 

and penetration in the system. 

A.  Structure of the modeled system and the underlying data 

 This example is based on the hourly prices from a time 

dependent value study of the California system (PG&E, [21]) 

and loads (CAISO [22]) for 2001.  The price pattern over the 

year is shown in Figure 5. The peak load in this example has 

been scaled to 60 GW and the total generation over the year is 

332,000 GWh. It assumes that the storage is 90% efficient on 

charging and discharging (81% efficient round trip).  It also 

assumes charging and discharging use the same device. 

 

 

Figure 5:  Patterns of prices over the year for this 

example 

B.  Modeling steps 

 The analysis first develops a relationship between load 

and price on the system.  It then applies the equations above to 

determine the charging or discharging each hour of the year. 

This gives us the values of α and β for each cycle and the 

marginal values of capacity.  The final step plots the contours 

of marginal values for storage reservoir capacity and 

charge/discharge capacity as a function of the reservoir and 

charge/discharge capacity. 

 The relationship between price and load is modeled using 

a bi-linear fit for each day. One linear fit is calibrated to the 

low load hours of the day and the other is calibrated for the 

highest hours of load each day. During most months the two 

linear fits are very similar.  During the summer months there 

is a sharp break with rapidly rising prices once the load 

exceeds a threshold.  The threshold is different for each day, 

so a different fit is needed for each day. Figure 6 illustrates the 

bi-linear fit for a summer day. 

 A series of cases was run assuming different values for 

storage energy capacity and charge/discharge power capacity 

in each case.  For each case, the model was executed for each 

day over the year. The Solver function in Excel™ was used to 

determine the values of α and β. For each case the αs, βs and 

γs were summed up over the year to give the marginal values 

of capacities for that case.  

 To implement the model αj, βj, and J must be determined.   
If it was economically advantageous, the storage was 

completely cycled each day.  In the algorithm values for αj and 

βj needed to fully charge and discharge for each day were first 

determined.  The values of αj and βj implicitly determine the 

hours at which the storage reservoir will completely charge 

and completely discharge. 

As long as the spread of SMC was great enough, αj was 

less than βj and it was economically worthwhile to cycle the 

storage fully on that day.  In some cases the SMC spread was 

so small that αj would have to be greater than βj in order to 

fully cycle the storage.  This implies that if the storage were 

completely charged and discharged that day, the marginal cost 

of charging would be greater than the marginal revenue of 
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discharging.  Clearly this would not be efficient.  In those 

cases the storage was only cycled up to the point that αj was 

equal to βj. During these partial cycles the storage system can 

earn net revenues.  But these revenues do not contribute to the 

marginal value of storage capacity since the storage system 

could have earned the same revenue with less capacity. The 

number of times that the storage could completely cycle over 

the year determined the value of J. 

 

Figure 6: Example of bilinear fit on day 220 

C.  Results from the example analysis 

 The primary result from the analysis are shown in Figure 

7 which shows two super-imposed sets of contours, one set for 

the marginal values of reservoir capacity and the other set for 

the marginal values of charge/discharge capacity.  These are 

plotted as functions of the reservoir energy capacity and 

charge/discharge power capacity.   

 From Figure 7 we can determine the optimal 

configuration of a storage system.  In an optimized system, the 

marginal cost of a technology should be just equal to its 

marginal value.  For a given type of storage technology, the 

marginal costs of reservoir capacity and charge/discharge 

capacities are known as a function of the total capacity 

deployed (for most technologies the marginal cost is constant). 

For a given marginal cost, we know that the optimal solution 

will fall on the contour of the corresponding marginal value. 

We can determine the contours that correspond to marginal 

costs of reservoir and charge/discharge capacity.  At the point 

where the two contours intersect the marginal values of 

reservoir capacity and of charge/discharge capacity will be 

just equal to their marginal costs.  This gives the optimal 

capacities for that storage technology.  To illustrate, assume 

(optimistically) that there is a storage technology with an 

annual cost 2.0 $/kW-yr for the charge/discharge capacity and 

a reservoir cost of cost of 1.5 $/kWh-yr.  The optimal storage 

system for this example would have a charge/discharge 

capacity of 1.25 GW and a reservoir capacity of about 6.3 

GWh.  If the annual cost of the reservoir were to decline to 1.0 

$/kWh-yr, the optimal capacities would be 2.2 GW of 

charge/discharge capacity and 12.5 GWh of reservoir capacity. 

 As would be expected, both types of capacity show 

decreasing returns to scale. The figure also illustrate the cross 

effects between capacities and marginal values of the storage 

components.  Increasing the capacity of one component 

improves the marginal value of the other component.  At very 

small capacities this effect is very strong.  As a result, the two 

sets of contours are fairly parallel for small values of reservoir 

and charge/discharge capacity. 

 
Figure 7:  Contours of the marginal values of storage 

reservoir capacity (mv rsvr, $/kWh-yr) and charge/discharge 

capacity (mv chg, $/kW-yr) 

V.   IMPACTS OF STORAGE ON RENEWABLE INVESTMENTS 

The illustration computes the prices that result from the 

operation of storage.  The price duration curve in Figure 8 

provides insight regarding the economic interaction between 

storage and renewable generation. This figure is constructed 

assuming large capacities for charge/discharge and storage (10 

GW of charge/discharge and 30 GW/h of storage capacity) in 

order to make the results clearer.   

As noted in the introduction, storage could increase the 

penetration of, say, wind if it tended to raise prices in off-peak 

hours when wind is generating but prices are low.  The results 

of this example indicate that storage would have a relatively 

small effect on off-peak prices since the off-peak prices are 

not particularly responsive to demands, as illustrated in Figure 

6.  This could often be the case since off-peak naturally 

implies that there are substantial generation resources 

available. 

 Figure 8 also indicates that storage substantially reduces 

the on-peak prices.  Again, figure 6 indicates that on-peak 

prices are quite sensitive to loads.  In a summer peaking 

system such as California’s, solar generators earn a substantial 

portion of their revenues during the peak hours of the day.  

Reducing the prices in peak hours would tend to discourage 

investment in solar technologies. 
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Figure 8: price duration curves with and without 

storage (assumes 30 GWh of reservoir storage and 

10 GW of charge/discharge capacity) 

VI.  CONCLUSIONS 

 If storage is to encourage investments in intermittent 

renewable resources, it will be deployed at scales large enough 

to affect the prices on the system.  The change in prices affects 

both the ultimate penetration of storage itself and the 

economic penetration of other technologies. This work 

provides the theoretical framework to determine the optimal 

operation of storage, evaluate its effect on system marginal 

prices, and assess the marginal value of the storage 

components.   

Applying this theory to an example system illustrates 

several points: 1) the use of these equations to optimize the 

capacities of the storage system, 2) the interaction between 

marginal values of charge/discharge capacity and the storage 

reservoir capacity, and 3) the impact that storage might have 

on the penetration of renewable generation. 

VII.  ACKNOWLEDGMENT 

The author would like to thank Tom Edmunds and Yiming 

Yao for their review of the manuscript and for their helpful 

comments, suggestions, and questions. 

VIII.  REFERENCES 

[1] I. Hoffman, A. Byrne, D. Kammen, “Redefining What’s Possible for 
Clean Energy by 2020: Job Growth, Energy Security”, Climate Change 

Solutions, June 2009 

[2] M. Z. Jacobson, M. A. Delucchi,  “A path to sustainable energy by 
2030”, Scientific American, November 2009 

[3] J. A. Turner, , “A Realizable Renewable Energy Future”, Science, Vol. 

285. no. 5428, July 1999: pp. 687 – 689 
[4] F. C. Schweppe, , M. C. Caramanis, R. D. Tabors, and R. E. Brown,  

Spot Pricing of Electricity, Kluwer Academic Publishers,  1987 

[5] S. Stoft, Power systems economics, Wiley Interscience, 2002 
[6] D. Boutacoff,  "Energy storage: Emerging strategies for energy storage", 

IEEE Power Engineering Review, December 1989, 

[7] T. B. Johansson, H. Kelly, A. K. N. Reddy, R. H. Williams, eds., L. 
Burnham, exec. ed., Renewable energy, sources for fuels and electricity, 

Island Press, 1993 

[8] EPRI, Market driven distributed energy storage system requirements for 
load management applications. EPRI, Palo Alto, CA, 1014668, 2007 

[9] J. M. Eyer, J. J. Iannucci, G. P. Corey, Energy storage benefits and 

market analysis handbook, Sandia National Laboratories, SAND2004-
6177, 2004 

[10] E. J. Fertig, J. Apt,  “Economics of compressed air energy storage to 

integrate wind power: A case study in ERCOT, Energy Policy, 39, 2011, 
pp. 2330 – 2342 

[11] M-A Hessami, D.R. Bowly,  “Economic feasibility and optimization of 

an energy storage system for Portland Wind Farm (Victoria, Australia), 
Applied Energy, 88,  2011, pp 2755-2763 

[12] J.  Iannucci, J. Eyer, B. Erdman, Innovative applications of energy 

storage in a restructured electricity marketplace Phase III final report, 
Sandia National Laboratories, SAND2003-2546 , 2003 

[13] M. Korpaas, A. T. Holena, R. Hildrumb, "Operation and sizing of 

energy storage for wind power plants in a market system", Electrical 
Power and Energy Systems, Vol. 25, 2003, pp 599–606 

[14] A. D. Lamont, Improving the value of wind energy generation through 

back-up generation and energy storage, December, California Energy 
Commission report CEC-500-2005-183, 2005 

[15] NYSERDA, Guide to estimating benefits and market potential for 

electricity storage in New York (with emphasis on New York City), 
New York State Energy Research And Development Authority, Final 

Report 07-06, March 2007 

[16] R. Sioshansi, P. Denholm, T. Jenkin, J. Weiss,  "Estimating the value of 
electricity storage in PJM: Arbitrage and some welfare effects", Energy 

Economics, Vol. 31, 2009, pp  269–277 

[17] A. Tuohy, M. O’Mally,  “Pumped storage in systems with very high 
wind penetration”, Energy Policy, 39, 2011, pp.1965 – 1974 

[18] A. D. Lamont, “Assessing the long-term system value of intermittent 

electric generation technologies”, Energy Economics, v. 30, Issue 3, 
May 2008 

[19] CAISO (California Independent System Operator), Technical Bulletin 
2009-06-05, Market Optimization Details, June 16, 2009 revised 

November 19, 2009 

[20] D. Kirschenand G. Strbac,  Fundamentals of power systems economics,  
John Wiley and Sons, 2004 

[21] PG&E, Time Dependent Valuation of Energy for Developing Building 

Efficiency Standards, Time Dependent Valuation (TDV) Formulation 
‘Cookbook’, prepared for PG&E by Heschong Mahone Group and 

Energy and Environmental Economic, March 2001  

[22] CAISO, (California Independent System Operator) OASIS data base, 
http://oasis.caiso.com/ , accessed May 12, 2004 

 

 

 

 

IX.  BIOGRAPHY 

Alan D. Lamont graduated from Stanford 
University in 1970 with Bachelors and Masters 

degrees in Civil Engineering.  After a term with 

the Peace Corps in Venezuela designing small 
dams, he worked for Woodward-Clyde 

Consultants in earthquake analysis for nuclear 

power plants and pipeline construction in Alaska.  
He returned to Stanford, and completed a PhD in 

Engineering Economic Systems in 1983.  From 
1983 to 1987 he was part of the Decision Analysis 

Group at Woodward-Clyde.  Since 1987 he has been with Lawrence 

Livermore National Laboratory working in analysis of security systems, 
decision analysis, risk analysis, and the economics of energy systems. 

 


